Transition-metal Thiofluorides; Preparation of WSF₄ and Related Anions

By MALCOLM J. ATHERTON and JOHN H. HOLLOWAY (Department of Chemistry, University of Leicester, Leicester LE1 7RH)

Summary ¹⁹F N.m.r., i.r., and Raman spectroscopy and mass spectrometry show that WSF₄ is the main product of the reaction of WF₆ with Sb₂S₃; reactions of solutions of WSCl₄ in MeCN with XeF₂ give ¹⁹F n.m.r. spectra attributable to WSF₄, WSF₃Cl, WSF₂Cl₂, and WSFCl₃, and with HF to WSF₄, WSF₅⁻, WSF₄Cl⁻, WSF₃Cl₂⁻, WSFCl₄⁻, and W₂S₂F₉⁻.

ALTHOUGH tungsten thiohalides are known for chlorine¹⁻⁵ and bromine,^{3,4} fluorine-containing analogues have not been isolated. The ions WSF_4^+ and $WS_2F_2^+$ have been identified by mass spectrometry,⁶ and $WSCl_xF_y^-$ (x + y= 5) species have been reported on the basis of ¹⁹F n.m.r. studies.⁷ We now describe the first preparation and isolation of WSF_4 and the characterization of a number of related molecules and anions.

Stoicheiometric quantities of WF_6 and Sb_2S_3 were heated at 300 °C in a nickel reactor [equation (1)]. After 3 h

$$3WF_6 + Sb_2S_3 \rightarrow 3WSF_4 + 2SbF_3 \tag{1}$$

short, yellow needles of WSF_4 were found in the cooler part of the reactor.[†] Smaller quantities of white needles were unambiguously characterized as SbF_3 by mass spectrometry. The yellow needles melt to an amber liquid at 89-90 °C *in vacuo* and, on exposure to direct sunlight, change colour to pale brown. On exposure to the atmosphere, WSF_4 rapidly evolves HF and H_2S .

Both the yellow and pale brown needles appear pale yellow when ground and their i.r. spectra are identical in the region 1800—350 cm⁻¹. The main features of the i.r. spectrum of the solid include strong peaks at 699, 673, and 643 cm⁻¹ which can be attributed to v(M-F) for three distinct terminal fluorines. A tungsten–sulphur bond is clearly evidenced by an intense peak at 577 cm⁻¹ and this is Investigation of WSF₄ by mass spectrometry reveals that WSF₄⁺ is the parent ion and WSF₃⁺ the most abundant species. Oxide fluoride species in the mass spectrum originate from traces of WOF₄, which is also evidenced by a small band at 1048 cm⁻¹ in the i.r. spectrum and a singlet at $\delta - 66.9$ p.p.m. in the ¹⁹F n.m.r. spectrum. This may have been formed from Sb₂O₃ impurity in the starting materials.

¹⁹F N.m.r. spectra of solutions of WSF₄ in MeCN show only a singlet at δ -85·1 p.p.m. which was assigned to WSF₄. After 14 days at 18 °C, another singlet developed at δ -169·9 p.p.m. Studies of tungsten hexafluoride in MeCN show a singlet in the same position and hence it can be assigned to WF₆. Examination of the solution revealed a slight precipitate, presumably due to the formation of WS₃ [equation (2)].

$$3WSF_4 \rightarrow 2WF_6 + WS_3$$
 (2)

The reaction of WSCl₄ with xenon diffuoride in MeCN has been followed by ¹⁹F n.m.r. spectroscopy. The reactants, in an F.E.P. reactor, were allowed to warm slowly from -196 °C. At *ca*. 0 °C reaction began, the solution changed colour from dark red to pale orange, and small amounts of gas were evolved. Six signals in the region $\delta - 80$ to -150p.p.m. are the main features of the spectrum (Table). Amongst these the signal attributable to WSF₄ and the broad unassigned signal at $-144\cdot1$ p.p.m. are predominant. Of the signals attributable to WSF₃Cl only the doublet was

confirmed by the presence of a strong peak in the Raman spectrum at 580 cm⁻¹. These values are close to that for $\nu(W=S)$ in WSCl_4.⁴ Tungsten-fluorine bridging-modes at 534 and 514 cm⁻¹ complete a picture which suggests that the solid-state structure must be polymeric with fluorine bridges, the most likely arrangement being that of a tetra-mer like WOF_4.⁸

[†] Satisfactory elemental analyses were obtained for this compound.

TABLE.	¹⁹ F N.m.r.	parameters for	WFS.	and	related	anions.
--------	------------------------	----------------	------	-----	---------	---------

Sample ^a WSF ₄ WSF ₄ ^f	Solvent ^b MeCN MeCN	Temp./°C 19 0	$\delta/{ m p.p.m.c} - 85.1 \\ \left\{ egin{array}{c} -84.7 \\ -169.9 \end{array} ight.$	Multiplet ^d structure I I I	Coupling constant/Hz $J_{ extbf{w-F}}$ 37 \pm 2	Assignment [®] WSF4 WSF4 WF6
$\operatorname{WSCl}_4:\operatorname{XeF}_2^g$ (1:2)	MeCN-CD ₃ CN	-28	$\left\{\begin{array}{c} -84\cdot3\\ -93\cdot4\\ -109\cdot3\\ -110\cdot8\\ -132\cdot3\\ -144\cdot1\end{array}\right.$	I I II I h	$J_{ t F-F}$ 73 \pm 2	WSF ₄ WSF ₂ Cl ₂ Unassigned WSF ₃ Cl WSFCl ₃ Unassigned
$WSCl_4: HF$ (1:6) $WSCl_4: HF$ (1:12)	MeCN-CD3CN MeCN-CD2CN	-28 25	$\left\{\begin{array}{c} +159\cdot3\\ +141\cdot2\\ -80\cdot0\\ -83\cdot5\\ -83\cdot7\\ -84\cdot8\\ -91\cdot1\\ -109\cdot7\\ -130\cdot5\\ -79\cdot5\end{array}\right.$	IX ⁱ V II I I I I I I I I I	$ \begin{cases} J_{\rm F-F} \ 71 \ \pm \ 2 \\ J_{\rm F-F} \ 72 \ \pm \ 2 \\ J_{\rm F-F} \ 72 \ \pm \ 2 \\ \end{cases} \\ J_{\rm F-F} \ 70 \ \pm \ 2 \\ J_{\rm W-F} \ 32 \ \pm \ 3 \\ \begin{cases} J_{\rm F-F} \ 70 \ \pm \ 2 \\ J_{\rm W-F} \ 33 \ \pm \ 2 \\ \end{cases} \\ \end{cases} $	$ \begin{array}{l} W_2S_2F_9^-\\ WSF_5^-\\ WSF_6^-\\ WSF_4Cl^-\\ W_2S_2F_9^-\\ WSF_4\\ Unassigned^1\\ WSF_9Cl_2^-\\ WSFCl_4^-\\ WSF_6^-\\ \end{array} $

^a Spectra recorded immediately after preparation of sample. ^b Concentration ca. 0.5 molal in F.E.P. tubes. ^c Spectra run at 94.1 MHz and referenced with respect to external GFCl₃. ^d I, Singlet; II, doublet; V, quintet; IX, nonet. ^e Determined with reference to n.m.r. data (refs. 7 and 9 and our unpublished observations). ^f After two weeks at 18 °C. ^g Three weak singlets in the region +60 to +75 p.p.m. not yet assigned. ^h Very broad signal, width at half-height *ca.* 450 Hz. ^f Central five lines identified by intensity ratio 29:50:65:55:28. ^J Observed in only one sample; may be due to WSF₂Cl₂. ^k Width at half-height *ca.* 120 Hz.

observed. The expected triplet is almost certainly hidden by the signals due to more dominant species.

Solutions of WSCl₄ and anhydrous HF in MeCN were also investigated. The results obtained (Table) substantiate the report of Buslaev et al.7 The lines assigned to uncharged species soon disappear from the spectrum and it appears that the chlorine containing anions slowly decrease in concentration with time whilst the WSF_5^- concentration increases. This behaviour follows the pattern of the WOCl₄-HF system in MeCN.⁹ With an HF:WSCl₄ ratio of ca. 12:1 the spectrum has a single broad signal at -79.5 p.p.m. This can be assigned to WSF₅⁻, its broadness

and lack of fine structure being due to rapid exchange at 25 °C. No signal corresponding to the WSF_5 quintet could be observed due to the presence of the broad resonance of the F.E.P. sample tube.

All tungsten thiofluoride species are extremely sensitive to sources of oxygen and tungsten oxide fluoride anions are readily formed. Details of the ¹⁹F n.m.r. spectra of these species can be found in ref. 7 and are not included in the Table.

(Received, 7th April 1977; Com. 337.)

- ¹ E. F. Smith and V. Oberholtzer, Z. anorg. Chem., 1894, 5, 68. ² K. M. Sharma, S. K. Anand, R. K. Multani, and B. D. Jain, Chem. and Ind., 1969, 1556.
- ³ D. Britnell, G. W. A. Fowles, and D. A. Rice, J.C.S. Dalton, 1974, 2191
- ⁴ D. Britnell, G. W. A. Fowles, and R. Mandyczewsky, Chem. Comm., 1970, 608.
- ⁵ N. S. Fortunatov and N. I. Timoshchenko, Ukrain. khim. Zhur., 1969, 35, 1207.
- ⁶ D. L. Hildenbrand, U.S. Nav. Tech. Inform. Serv. R.D. Rep. No. 757231, 1972. ⁷ Y. A. Buslaev, Y. B. Kokymov, and Y. D. Chubar, *Proc. Acad. Sci.* (U.S.S.R.), 1973, 213, 912.
- R. Beattie, K. M. S. Livingston, D. J. Reynolds, and G. A. Ozin, J. Chem. Soc. (A), 912.
 Y. A. Buslaev, Y. V. Kokunov, and V. A. Bochkareva, J. Struct. Chem., 1972, 13, 570.